Finite solvable groups whose character graphs are trees

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

finite bci-groups are solvable

‎let $s$ be a subset of a finite group $g$‎. ‎the bi-cayley graph ${rm bcay}(g,s)$ of $g$ with respect to $s$ is an undirected graph with vertex set $gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid xin g‎, ‎ sin s}$‎. ‎a bi-cayley graph ${rm bcay}(g,s)$ is called a bci-graph if for any bi-cayley graph ${rm bcay}(g,t)$‎, ‎whenever ${rm bcay}(g,s)cong {rm bcay}(g,t)$ we have $t=gs^alpha$ for some $...

متن کامل

Solvable groups whose character degree graphs have non-trivial fundamental groups

In this talk, we introduce the character degree graph of a finite group G. We will discuss various properties of this graph, and we will further discuss what graphs can occur as the character degree graphs of finite solvable groups. In particular, we focus on groups with characters of degree pq, pr, and qr, where p, q, and r are distinct primes. Although some group theory will be assumed, knowl...

متن کامل

Finite groups all of whose proper centralizers are cyclic

‎A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic‎. ‎In this article we determine all finite $CC$-groups.

متن کامل

on fitting groups whose proper subgroups are solvable

this work is a continuation of [a‎. ‎o‎. ‎asar‎, ‎‎‎on infinitely generated groups whose proper subgroups are solvable‎, ‎{em j‎. ‎algebra}‎, ‎{bf 399} (2014) 870-886.]‎, ‎where it was shown‎ ‎that a perfect infinitely generated group whose proper subgroups‎ are solvable and in whose homomorphic images normal closures of ‎finitely generated subgroups are residually nilpotent is a fitting‎‎$p$-g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2006.09.009